Effects of lead (Pb) on Jatropha curcas L. growth under hydroponic conditions

Enrico Palchetti, Chiara Grassi, Alberto Masoni, Claudia Gabriela Zubieta, Elena Valenzi, Anne Whittaker, Stefano Benedettelli, Vincenzo Vecchio


The contamination of the environment with pollutants, like heavy metals from human activity, has caused the loss of agricultural land. One possible solution could be the utilization of phytoremediation technique with particular plant, capable of absorbing the contaminants from soil.
Jatropha curcas, an important plant for the biodiesel production, in particular in tropical areas, has the capacity to grown in marginal land, compromised for food cultivation. The experiment was conducted in hydroponic conditions with the objective to evaluate the response and growth parameters of juvenile plants grown in presence of different Pb levels (0-100-200 mg/L). It was possible to study the interaction in the plant between some mineral element (Ca, Mg, Zn and Fe) and morphological parameters and Pb, and evaluate some tolerance indicators. Results showed that the plants were able to grow in presence of Pb and to accumulate high levels of heavy metal in the roots, followed by the stems and leaves. However, Jatropha curcas subjected to Pb treatment demonstrated stunted growth and alterations in mineral elements contents. The results suggest that J. curcas may tolerate the levels of Pb imposed, but there is low translocation of heavy metal to aerial tissues, within the time period of analysis.

Full Text:



Achten W.M.J., Verchot L., Franken Y.J., Mathijs E., Singh V.P., Aerts R., Muys B., 2008. Jatropha bio-diesel production and use. Biomass Bioenerg., 32:1063-1084.

Chang F., Ko C., Tsai M., Wang Y., Chung C., 2014. Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology, 23:1969-1978.

Clemens S., 2006. Toxic metals accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88:1707-1719.

Gamalero E., Lingua G., Berta G., Glick B.R., 2009. Beneficial role of plant growth-promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol., 55:501-514.

Ghavri S. V., Singh P., 2010. Phytotranslocation of Fe by biodiesel plant Jatropha curcas L. grown on iron rich wasteland soil. Braz. J. Plant Physiol., 22 (4):235-243.

Halim M., Conte P., Piccolo A., 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere., 52:265-275.

Huang J.W., Cunningham S.D., 1996. Lead phytoextraction species variation in lead uptake and translocation. New Phytol., 134:75-84.

Jongschaap R.E.E., Corrè W.J., Bindraban P.S., Brandenburg W.A., 2007. Claims and Fact on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International B.V Wageningen. (The Netherlands and Stichting Het GroeneWoundt, Laren, The Netherlands. Report 158).

Kumar P.B.A.N., Dushenkov V., Motto H., Raskin I., 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 29:1232-1238.

Kumar A., Sharma S., 2008. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas): A review. Ind. Crop Prod., 28:1-10.

Kumar G.P., Yadav S.K., Thawale P.R., Singh S.K., Juwarkar A. A., 2008.

Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – A greenhouse study. Bioresource Technol., 99:2078-2082.

Lado L.R., Hengl T., Reuter H.I., 2008. Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma, 148:189-199.

Lasat M.M., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Review and Analyses. J. Environ. Qual., 31:109-120.

Lasat M.M., 2000. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res., Vol. 2, n.5.

Liang J., Yang Z., Tang L., Xu Y., Wang S., Chen F., 2012. Growth performance and tolerance responses of Jatropha (Jatropha curcas) seedling subjected to isolated or combined cadmium and lead stresses. Int. J. Agric. Biol., 14:861-869.

Lotti G., 1985. Principi di chimica e biochimica vegetale Vol. II. (Pisa: ETS-Editrice).

Luhach J., Chaudhry S., 2012. Phytoremediation potential of Jatropha curcas for removal of heavy metals from refinery sludge. Int. J. Sci. Eng. Res., Vol. 3, Issue 10.

Majid N. M., Islam M. M., Riasmi Y., 2012. Heavy metal uptake and translocation by Jatropha curcas L. in sawdust sludge contaminated soils. Aust. J. Crop Sci., 6(5): 891-898.

Patra M., Bhowmik N., Bandopadhyay B., Sharma A., 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot., 52:199-223.

Romeiro S., Lagôa A.M.M.A., Furlani P. R., De Abreu C. A., De Abreu M. F., Erismann N. M., 2007. Lead uptake and tolerance of Ricinus communis L. Braz. J. Plant Physiol., 18, 483-489.

Sharma P., Dubey R.S., 2005. Lead toxicity in plants. Braz. J. Plant Physiol., 17:35-52.

Shu X., Yin L., Zhang Q., Wang W., 2011. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ. Sci. Pollut. Res., 19:893-902.

Tang Y., Qiu R., Zeng X., Ying R., Yu F., Zhou X., 2009. Lead, zinc, cadmium hyperaccumulation and growth simulation in Arabis paniculata Franch. Environ. Exp. Bot., 66:126-134.

Yadav S. K., Juwarkar A.A., Kumar G.P., Thawale P.R., Singh S.K., Chakrabarti T., 2009. Bioaccumulation and phytotraslocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technol., 100:4616-4622.

Zhao Z., Xi M., Jiang G., Liu X., Bai Z., Huang Y., 2010. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea Mays, L.). J. Hazard. Mater., 181:455-459.

Zhi-xin N., Li-na S., Tie-heng S., Yu-shuang L., Hong W., 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci., 19:961-967.

DOI: http://dx.doi.org/10.12895/jaeid.2016110.449