Potential climate change favored expansion of a range limited species, Haematostaphis barteri Hook f.

Jacob Koundouonon Moutouama, Belarmain Adandé Fandohan, Honoré Samadori Sorotori Biaou, Ogoundjè Isidore Amahowe, Fidèle Tchossi Moutouama, Armand K. Natta

Abstract


Understanding impact of climate change on range breadth of rare species can improve the ability to anticipate their decline or expension and take appropriate conservation measures. Haematatostaphis barteri is an agroforestry species of the Sudanian centre of endemism in Africa. We investigeted impact of climate change on range of suitable habitats for this species in Benin,using the Maximum Entropy algorithm under R software. Five environmental variables were used with the regional climate model under the new Representation Concentration Pathways (RCP). Moisture Index of the Moist Quarter and Slope variability had the greatest predictive importance for the range of suitable habitats for H. barteri. Its Potential breadth was found to be currently limited to the Atacora Mountain Chain (AMC) and covers 0.51% of national territory. Climate change was projected to favor expansion of suitable habitats for H. barteri by 0.12% and 0.05%, respectively for the RCP4.5 and RCP8.5. These habitats were however mostly out of the local protected areas network. Climate change would extend range of habitats for H. barteri. Observed protection gaps suggest need for integrating this species into formal in situ, on-farm or ex situ conservation schemes.

Full Text:

PDF

References


Adomou, A.C. 2005. Vegetation patterns and environmental gradients in Benin. Implications for biogeography and conservation. PhD Thesis: Wageningen University, 150pp.

Akoègninou, A., van der Burg, W.J. and van der Maesen, L.J.G. 2006. Flore analytique du Bénin. Backhuys Publishers, Wageningen., 1064pp.

Arbonnier, M. 2002. Arbres, arbustes et lianes des zones sèches d’Afrique de l'Ouest. Editions Quae, 576pp.

Austin, M. 2006. Species distribution models and ecological theory : A critical assessment and some possible new approaches. 0, 1–19.

Domisch, S., Jähnig, S.C. and Haase, P. 2011. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology, 56, 2009–2020.

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., Psomas, A., Schmatz, D.R., Silc, U., Vittoz, P. and Hülber, K. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2, 619–622.

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., S. Wisz, M. and E. Zimmermann, N. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.

Estrada, A., Meireles, C., Morales-Castilla, I., Poschlod, P., Vieites, D., Araújo, M.B. and Early, R. 2015. Species’ intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography, 24, 849–858.

Eyog Matig, O., Gaoué, O.G. and Dossou, B. (eds.) 2002. Réseau « Espèces Ligneuses Alimentaires ». Compte rendu de la première réunion du Réseau tenue 11–13 décembre 2000 au CNSF Ouagadougou. Burkina Faso, Institut International des Ressources Phytogénétiques, 241pp.

Fandohan, B., Gouwakinnou, G.N., Fonton, N.H., Sinsin, B. and Liu, J. 2013. Impacts des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnologie, Agronomie, Société et Environnement, 17, 450–462.

Fandohan, A.B., Oduor, A.M.O., Sodé, A.I., Wu, L., Cuni-Sanchez, A., Assédé, E. and Gouwakinnou, G.N. 2015a. Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability, 1, 1–12.

Fandohan, A.B., Moutouama, J.K., Biaou, S.S.H., Gouwakinnou, N.G. and Adomou, C.A. 2015b. Le réseau d’aires protégées Bénin-Togo assure-t-il la conservation de Thunbergia atacorensis (Acanthaceae)? Science de la vie, de la terre et agronomie REV. CAMES -, 03, 25–31.

Fourcade, Y., Engler, J.O., Rodder, D. and Secondi, J. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE, 9, 1–13.

Gouwakinnou, N.G. 2011. Population ecology, uses and conservation Of Sclerocarya Birrea (A. Rich.) Hochst. (Anacardiaceae) in Benin, West Africa. PhD Thesis:Université d’Abomey-Calavi, 176pp.

Idohou, R., Assogbadjo, A.E., Kakaï, R.G. and Peterson, A.T. 2016. Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agroforestry Systems.

Intergovernmental Panel on Climate Change 2014. Summary for policymakers. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–31.

Kumar, S. and Stohlgren, T.J. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Science Vol 1(4), 1, 094–098.

Mckinney, M.L. and Lockwood, J.L. 1999. Biotic homogenization : a few winners replacing many losers in the next mass extinction. 5347, 450–453.

Merow, C., Smith, M.J. and Silander, J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058–1069.

Midgley, G.F. and Bond, W.J. 2015. Future of African terrestial biodiversity and ecosystems under anthropogenic climate change. Nature Publishing Group, 5, 823–829.

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P. and Wilbanks, T.J. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

Pearson, R.G., Raxworthy, C.J., Nakamura, M. and Townsend Peterson, A. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, 34, 102–117.

Phillips, S.B., Aneja, V.P., Kang, D. and Arya, S.P. 2006. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues, 6, 231–252.

Platts, P.J., Omeny, P.A. and Marchant, R. 2014. AFRICLIM: high-resolution climate projections for ecological applications in Africa. African Journal of Ecology, 53, 103–108.

Radosavljevic, A. and Anderson, R.P. 2014. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643.

Renner, I.W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G. and Warton, D.I. 2015. Point process models for presence-only analysis. Methods in Ecology and Evolution, 6, 366–379.

Schwartz, M.W. 2012. Using niche models with climate projections to inform conservation management decisions. Biological Conservation, 155, 149–156.

Soley-Guardia, M., Gutiérrez, E.E., Thomas, D.M., Ochoa-G, J., Aguilera, M. and Anderson, R.P. 2016. Are we overestimating the niche? Removing marginal localities helps ecological niche models detect environmental barriers. Ecology and Evolution, 6, 1267–1279.

Stocker, T.F. 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

Thomas, C.D., Thomas, C.D., Cameron, A., Cameron, A., Green, R.E., Green, R.E., Bakkenes, M., Bakkenes, M., Beaumont, L.J., Beaumont, L.J., Collingham, Y.C., Collingham, Y.C., Erasmus, B.F.N., Erasmus, B.F.N., De Siqueira, M.F., De Siqueira, M.F., Grainger, A., Grainger, A., Hannah, L., Hannah, L., Hughes, L., Hughes, L., Huntley, B., Huntley, B., Van Jaarsveld, A.S., Van Jaarsveld, A.S., Midgley, G.F., Midgley, G.F., Miles, L., Miles, L., Ortega-Huerta, M. a, Ortega-Huerta, M. a, Peterson, a T., Peterson, a T., Phillips, O.L., Phillips, O.L., Williams, S.E. and Williams, S.E. 2004. Extinction risk from climate change. Nature, 427, 145–8.

Wala, K. and Sinsin, B. 2010. Atlas de la Biodiversité de l ’ Afrique de l ’ Ouest Biodiversity Atlas of West Africa. In: B. Sinsin and D. Kampmann (Editors) Atlas de la Biodiversité de l ’ Afrique de l ’ Ouest Biodiversity Atlas of West Africa, Volume I. Cotonou & Frankfurt/Main. English:, 726p.




DOI: http://dx.doi.org/10.12895/jaeid.2016110.516