Olive mill waste water spreading in southern Tunisia: effects on a barley crop: (Hordeum Vulgare. L)

Raja Dakhli, Elhem Mallek Maalej


This study is designed to assess the impact of different concentrations of Olive Mill Waste Water (OMWW) on the phenological behavior of a local barley variety (Arthaoui: Hordem vulgare L.) during three consecutive crop years. For developing this work, a complete randomized block design was installed with four amounts of OMWW equivalent to 0 m³/ha (T0), 15 m³/ha (T1), 30 m³/ha (T2) and 45 m³/ha (T3), a local barley variety (Arthaoui) and 3 replications.
The results showed a highly significant reduction as well as of the tiller and ears number compared to the control according to the increase of OMWW concentration especially for the highest amounts either T2 and T3 respectively 30 m³/ha and 45 m³/ha. This reduction was although observed but it was less accentuated for the treatment with an amount of 15 m³/ha compared to the other rates.
In addition, barley yield components were negatively affected by “OMWW” in particular yields plots that received higher doses as 30 m³/ha and 45 m³/ ha.
Obviously, the straw and seed yield are catastrophically affected with relatively different degrees depending on the dose applied but also on the cumulative effect of successive applications during the three years of study.
Indeed, richness of these effluents on salts especially in sodium and chlorides, on polyphenols and other compounds with variable toxicity is causing physiological disturbances that are negatively reflected at different phenological stages of barley as tillering, stem elongation and heading giving the catastrophic results in terms of seed yield.
Keywords: OMWW, Barley, tiller number, ear number.

Full Text:



Abou-Leila B., Metwally S.A., Hussen M. M., Leithy S. Z., 2012. The combined effect of salinity and ascorbic acid on anatomical and physiological aspects of jatropha plants. Austr. J. Basic Appl. Sci. 6(3): 533-541.

Ashraf M., 2004. Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361-376.

Asharf M., Foolad M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59:206-216.

Ammar E., and Ben Rouina B., 1999. Potential horticultural utilization of olive oil processing wastewater. Acta horticulturae 474 (2): pp 741-744.

Ben Rouina B., and Ammar E., 1999. L’utilisation des margines comme fertilisant biologique pour les cultures des plantes maraichères. Séminaire national sur l’huile d’olive et ses dérivés. Société chimique de Tunisie. Hammamet 26-28 Nov. 1999.

Boughalleb F., Hajlaoui H., Denden M., 2012. Effect of salt stress on growth, water relations, solute composition and photosynthetic capacity of hero-halophyte Nitraria retusa (L.). Environ. Res. J. 6(1): 1-13.

Bounaqba S., Yacoubi Tej M., and Zid E., 1996. Croissance et développement de 3 céréales (blé, triticale et orge) cultivées en milieu hydroponique sous contrainte saline. Séminaire international « Acquis scientifiques et perspectives pour un développement durable des zones arides ».

Briccoli Bati C., and Lombardo N., 1990. Effects of olive oil waste water irrigation on young olive plants, Acta Hort. 286 : 489 491.

Calu G., 2006. Effet du stress salin sur les plantes. Comparaison entre deux plantes modèles: Arabidopsis thaliana et Thellungiela halophila. Master 1, Recherche biotechnologie: du gène à la molécule Spectro Sciences, article 23, 10 p

Catalano M., Gomes T., Defelice M., and Leonardis T., 1985. Smaltimanto delle acque di vegetazione dei frantoi oleari. Quali alternative alla depuratione ? Inquinamento. Vol. 27 (2). pp 87-90.

Capasso R., De Martino A., and Arienzo M., 2002a. Recovery and characterization of the metal polymeric organic fraction (polymerin) from olive oil mill wastewaters. J Agric Food Chem., 50 (10), pp 2846-55.

Capasso R., De Martino A., and Cristinzio G., 2002b. Production, characterization, and effects on tomato of humic acid-like polymerin metal derivatives from olive oil mill waste waters. J Agric Food Chem., 50 (14) pp 4018-4024.

Dakhli R., 2009. Valorisation des Margines en agriculture: effet sur les propriétés chimiques du sol et sur le rendement d’une culture d’Orge. DEA. IRA-INAT. Dolatabadian A, Modarreressanavy SAM, Ghanati F (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Nat. Sci Biol. 3(1): 41-45.

Dakhli R., and Lamouri R., 2013(a). “Effet De L’epandage Des Margines Sur Les Proprietes Chimiques Du Sol Et Sur Le Comportement Phenologique Et Le Rendement D’une Culture D’orge”. European Journal of Scientific Research.Vol. 112 No 1. pp 94-109.

Dakhli R., Lamouri.R., Taamallah H., and Ouessar M., 2013(b). “Short Term Effects of Olive Mill Waste Water on Soil Chemical Properties under Semi Arid Mediterranean Conditions”. Journal of Life Sciences, Vol. 7, No. 11, pp. 1209 -1218.

Dagar, J.C., Bhagwan H., and Kumar Y., 2004. Effect of growth performance and biochemical content of salvadorapersica when irrigated with water of different salinity. Indian J. Pl. Physiol., 9(3): 234-238.

Dolatabadian A., Modarreressanavy S.A.M., Ghanati F., 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Nat. Sci Biol. 3(1): 41-45.

Fenice M., Giovannozzi Sermanni G., Federici F. and D’Annibale A., 2003. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J. Biotechnol, 100 (1), 77-85.

Garcia Garcia I., Jimenez Pena P.R., Bonilla Venceslada J.L., Martin Martin A., Martin Garrido Hoyos S..E., Martinez Nieto L., Camacho Rubio F. and Ramos Cormenzana A., 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Pro.Biochem., 37, pp 1169-1176.

Garrido Hoyos S.E., Martinez Nieto L., CamachoRubio F. and Ramos Cormenzana A., 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Pro. Biochem., 37, 1169-1176.

Gharsallah N., Labat M., Aloui F. and Sayadi S., 1999. The effect of Phanerochaete chrysosporium pretreatment of olive mill wastewaters on anaerobic digestion. Ressources Conservation and recycling, 27, 187-192.

Ghazi N, Al-Karaki G.N. 2006. Nurcery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci. Horr. 109: 1-7.

Greenway H., 1962(a). Plant responses to saline substrates. II. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatement. Aust J Biol Sci 15,39-57.

Greenway H., 1962(b). Plant responses to saline substrates. II. Chloride, sodium and potassium uptaker and translocation in young plants of Hordeum during and after short sodium chloride treatement. Aust J Biol Sci 15,16-38.

Hajji M. et Grignon C., 1985. Identification des transports de K+(Rb+) affectés par NaCl dans la racine du laurier –rose. Physiol Vég 23, 3-12.

Hamdi M., 1993(a). Future prospects and constraints of alive mill waste waters use and treatment: A. Review. Bioprocess Engineering, 8, 209-214.

Hamdi M., 1993(b) Valorisation et épuration des effluents des huileries d’olives: l’utilité de la microbiologie industrielle. Olivae, 46, 20-24.

Jeschke W.D., Wolf O., and Hartung W., 1992. Effect of NaCl on flows and partitioning of C, N and mineral ions in whole plants of white lupin, Lupinus alba L. J. Exp. Bot., (43) p. 777-78.

Kent L.M., and Lauchli A., 1985. Germination and seedling growth of cotton: salinity-calcium inteactions. Plant Cell environ 8, 155-159.

Kingsbury R.W., Epstein E. & Pearcy R.W., 1984. Physiological responses to salinity in selected lines of wheat. Plant Physiol., (74) p. 417- 423.

Kissi M., Mountadar M., Assobhei O., Gargiulo E., Palmieri G., Giardina P. & Sannia G., 2001. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification Appl Microbiol Biotechnol., 57 (1-2), pp 221-6.

Kyparassis A., Ptropoulou Y. & Manetas Y., 1995. Summer survival of leaves in a soft leaved shrub (Phlomis fruticosa L. Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J. Exp. Bot., (46) p. 1825-1831

La Haye P.A. and Epstein E., 1969. Salt tolerance by plants: enhancement with calcium. Science 166: 395-396.

Leger C.L., Kadiri-Hassani N. & Descomps B. (2000). Decreased superoxide anion production in cultured human promonocyte cells (THP-1) due to polyphenol mixtures from olive oil processing wastewaters. J Agric. Food. Chem., 48 (10), 5061-7.

Maggio A., Raimondo G., 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 59(3): 276-282.

Maggio A., Raimondi G., 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 59 (3): 276-282.

Mansour M.M.F., 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum, 43(4), 491–500.

Mekki A., Abdelhafidh D. and Sayadi S., 2006. Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol. Res. 161, 93–101.

Michele Rinaldi, Gianfranco Rana, Michele Introna. 2003. Olive-mill wastewater spreading in southern Italy: effects on a durum wheat crop. Field Crops Research 84 (2003) 319–326.

Munns R., 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16, pp 15-2

Munns R., James R.A., Lauchli A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1181-1199.

Neocleous D., Vasilakakis M., 2007. Effects of NaCl on red raspberry (Rubus idaeus L ‘Autumn bliss’). Sci. Hort. 112:282-289.

Pozo C., Martinez-Toledo M.V., Rodelas B. and Gonzalez-Lopez J., 2002. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. J. of Biotechnology 97, 125-131.

Ros de Ursinos J. A., 1981. Différentes utilisations des margines. Obtention de protéines unicellulaires. FAO. Séminaire international sur la valorisation des sous-produits de l’olivier. pp 101 -103.

Ros de Ursinos F. and Morisot M., 1981. Différentes utilisations des margines : Recherches en cours, résultats obtenus et applications. Séminaire international sur la valorisation des sous - produits de l’olivier. Monastir – Tunisie. 15 – 17 décembre 1981. Eds PNUD/FAO, Madrid Espagne. 1983. pp 93 -110.

Saqib, M., Akhtar J. and Qureshi R.H., 2005. Na+ exclution and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci., 169: 125-130.

Singh A., Prasad S., 2009. Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. IJIB. 7(2):117-123.

Stassart J.M., Neirinckx L. and Dejaegere R., 1981. The interactions between monovalent cations and calcium during their absorption on isolated cell walls and absorption by intact Barley roots. Ann. Bot. 47,647-652.

Soltani, A., Hajji M. and Grignon C., 1993. Recherche de facteurs limitant la nutrition minérale de l’orge en milieu Salé. Agronomie, 10: 857– 66.

Tester M. and Davenport R., 2003. Na+ resistance and Na+ transport in higher plants. Ann. Bot., 91: 1-25.

Wang L.W., Showalter A.M. and Ungar I.A., 1997. Effect of salinity on growth; on content, and cell wall in Atriplex prostrata. Am. J. Bot., (84) p. 1247-1255.

Wang W.Y., Yan X.F., Jiang Y., Qu B., Xu Y.F., 2012. Effects of salt stress on water content and photosynthetic characteristics in Iris lactea var. Chinensis seedlings. Middle-East J. Sci. Res. 12(1): 70-74.

Ziska L.H., Seamann J.R. and Dejoing T.M. (1990). Salinity induced limitations of photosynthesis in Prunus salinica, adecidnons tree species. Plant Physiol., (93) p.864-870.

DOI: http://dx.doi.org/10.12895/jaeid.20171.552